Copied to
clipboard

G = C42.3Dic7order 448 = 26·7

3rd non-split extension by C42 of Dic7 acting via Dic7/C7=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.3Dic7, C4⋊Q8.3D7, (C4×C28).3C4, (C2×C28).6D4, (Q8×C14).3C4, (C2×Q8).4D14, (C2×Q8).3Dic7, C72(C42.3C4), (Q8×C14).4C22, C14.26(C23⋊C4), C28.10D4.2C2, C2.11(C23⋊Dic7), C22.17(C23.D7), (C7×C4⋊Q8).3C2, (C2×C28).11(C2×C4), (C2×C4).8(C7⋊D4), (C2×C4).4(C2×Dic7), (C2×C14).106(C22⋊C4), SmallGroup(448,105)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C42.3Dic7
C1C7C14C2×C14C2×C28Q8×C14C28.10D4 — C42.3Dic7
C7C14C2×C14C2×C28 — C42.3Dic7
C1C2C22C2×Q8C4⋊Q8

Generators and relations for C42.3Dic7
 G = < a,b,c,d | a4=b4=1, c14=b2, d2=b2c7, ab=ba, cac-1=a-1, dad-1=a-1b, cbc-1=b-1, dbd-1=a2b, dcd-1=c13 >

Subgroups: 204 in 60 conjugacy classes, 23 normal (17 characteristic)
C1, C2, C2, C4, C22, C7, C8, C2×C4, C2×C4, C2×C4, Q8, C14, C14, C42, C4⋊C4, M4(2), C2×Q8, C28, C2×C14, C4.10D4, C4⋊Q8, C7⋊C8, C2×C28, C2×C28, C2×C28, C7×Q8, C42.3C4, C4.Dic7, C4×C28, C7×C4⋊C4, Q8×C14, C28.10D4, C7×C4⋊Q8, C42.3Dic7
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, Dic7, D14, C23⋊C4, C2×Dic7, C7⋊D4, C42.3C4, C23.D7, C23⋊Dic7, C42.3Dic7

Smallest permutation representation of C42.3Dic7
On 112 points
Generators in S112
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 102 71 88)(58 89 72 103)(59 104 73 90)(60 91 74 105)(61 106 75 92)(62 93 76 107)(63 108 77 94)(64 95 78 109)(65 110 79 96)(66 97 80 111)(67 112 81 98)(68 99 82 85)(69 86 83 100)(70 101 84 87)
(1 43 15 29)(2 30 16 44)(3 45 17 31)(4 32 18 46)(5 47 19 33)(6 34 20 48)(7 49 21 35)(8 36 22 50)(9 51 23 37)(10 38 24 52)(11 53 25 39)(12 40 26 54)(13 55 27 41)(14 42 28 56)(57 88 71 102)(58 103 72 89)(59 90 73 104)(60 105 74 91)(61 92 75 106)(62 107 76 93)(63 94 77 108)(64 109 78 95)(65 96 79 110)(66 111 80 97)(67 98 81 112)(68 85 82 99)(69 100 83 86)(70 87 84 101)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 95 22 88 15 109 8 102)(2 108 23 101 16 94 9 87)(3 93 24 86 17 107 10 100)(4 106 25 99 18 92 11 85)(5 91 26 112 19 105 12 98)(6 104 27 97 20 90 13 111)(7 89 28 110 21 103 14 96)(29 78 50 71 43 64 36 57)(30 63 51 84 44 77 37 70)(31 76 52 69 45 62 38 83)(32 61 53 82 46 75 39 68)(33 74 54 67 47 60 40 81)(34 59 55 80 48 73 41 66)(35 72 56 65 49 58 42 79)

G:=sub<Sym(112)| (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,102,71,88)(58,89,72,103)(59,104,73,90)(60,91,74,105)(61,106,75,92)(62,93,76,107)(63,108,77,94)(64,95,78,109)(65,110,79,96)(66,97,80,111)(67,112,81,98)(68,99,82,85)(69,86,83,100)(70,101,84,87), (1,43,15,29)(2,30,16,44)(3,45,17,31)(4,32,18,46)(5,47,19,33)(6,34,20,48)(7,49,21,35)(8,36,22,50)(9,51,23,37)(10,38,24,52)(11,53,25,39)(12,40,26,54)(13,55,27,41)(14,42,28,56)(57,88,71,102)(58,103,72,89)(59,90,73,104)(60,105,74,91)(61,92,75,106)(62,107,76,93)(63,94,77,108)(64,109,78,95)(65,96,79,110)(66,111,80,97)(67,98,81,112)(68,85,82,99)(69,100,83,86)(70,87,84,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,95,22,88,15,109,8,102)(2,108,23,101,16,94,9,87)(3,93,24,86,17,107,10,100)(4,106,25,99,18,92,11,85)(5,91,26,112,19,105,12,98)(6,104,27,97,20,90,13,111)(7,89,28,110,21,103,14,96)(29,78,50,71,43,64,36,57)(30,63,51,84,44,77,37,70)(31,76,52,69,45,62,38,83)(32,61,53,82,46,75,39,68)(33,74,54,67,47,60,40,81)(34,59,55,80,48,73,41,66)(35,72,56,65,49,58,42,79)>;

G:=Group( (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,102,71,88)(58,89,72,103)(59,104,73,90)(60,91,74,105)(61,106,75,92)(62,93,76,107)(63,108,77,94)(64,95,78,109)(65,110,79,96)(66,97,80,111)(67,112,81,98)(68,99,82,85)(69,86,83,100)(70,101,84,87), (1,43,15,29)(2,30,16,44)(3,45,17,31)(4,32,18,46)(5,47,19,33)(6,34,20,48)(7,49,21,35)(8,36,22,50)(9,51,23,37)(10,38,24,52)(11,53,25,39)(12,40,26,54)(13,55,27,41)(14,42,28,56)(57,88,71,102)(58,103,72,89)(59,90,73,104)(60,105,74,91)(61,92,75,106)(62,107,76,93)(63,94,77,108)(64,109,78,95)(65,96,79,110)(66,111,80,97)(67,98,81,112)(68,85,82,99)(69,100,83,86)(70,87,84,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,95,22,88,15,109,8,102)(2,108,23,101,16,94,9,87)(3,93,24,86,17,107,10,100)(4,106,25,99,18,92,11,85)(5,91,26,112,19,105,12,98)(6,104,27,97,20,90,13,111)(7,89,28,110,21,103,14,96)(29,78,50,71,43,64,36,57)(30,63,51,84,44,77,37,70)(31,76,52,69,45,62,38,83)(32,61,53,82,46,75,39,68)(33,74,54,67,47,60,40,81)(34,59,55,80,48,73,41,66)(35,72,56,65,49,58,42,79) );

G=PermutationGroup([[(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,102,71,88),(58,89,72,103),(59,104,73,90),(60,91,74,105),(61,106,75,92),(62,93,76,107),(63,108,77,94),(64,95,78,109),(65,110,79,96),(66,97,80,111),(67,112,81,98),(68,99,82,85),(69,86,83,100),(70,101,84,87)], [(1,43,15,29),(2,30,16,44),(3,45,17,31),(4,32,18,46),(5,47,19,33),(6,34,20,48),(7,49,21,35),(8,36,22,50),(9,51,23,37),(10,38,24,52),(11,53,25,39),(12,40,26,54),(13,55,27,41),(14,42,28,56),(57,88,71,102),(58,103,72,89),(59,90,73,104),(60,105,74,91),(61,92,75,106),(62,107,76,93),(63,94,77,108),(64,109,78,95),(65,96,79,110),(66,111,80,97),(67,98,81,112),(68,85,82,99),(69,100,83,86),(70,87,84,101)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,95,22,88,15,109,8,102),(2,108,23,101,16,94,9,87),(3,93,24,86,17,107,10,100),(4,106,25,99,18,92,11,85),(5,91,26,112,19,105,12,98),(6,104,27,97,20,90,13,111),(7,89,28,110,21,103,14,96),(29,78,50,71,43,64,36,57),(30,63,51,84,44,77,37,70),(31,76,52,69,45,62,38,83),(32,61,53,82,46,75,39,68),(33,74,54,67,47,60,40,81),(34,59,55,80,48,73,41,66),(35,72,56,65,49,58,42,79)]])

55 conjugacy classes

class 1 2A2B4A···4E4F7A7B7C8A8B8C8D14A···14I28A···28R28S···28AD
order1224···44777888814···1428···2828···28
size1124···48222565656562···24···48···8

55 irreducible representations

dim111112222224444
type+++++--++-
imageC1C2C2C4C4D4D7Dic7Dic7D14C7⋊D4C23⋊C4C42.3C4C23⋊Dic7C42.3Dic7
kernelC42.3Dic7C28.10D4C7×C4⋊Q8C4×C28Q8×C14C2×C28C4⋊Q8C42C2×Q8C2×Q8C2×C4C14C7C2C1
# reps12122233331212612

Matrix representation of C42.3Dic7 in GL4(𝔽113) generated by

11209648
0112140
0013
0037112
,
112374985
315162
00112110
00761
,
5181370
109629129
003369
003180
,
975610591
60875774
111193294
94127810
G:=sub<GL(4,GF(113))| [112,0,0,0,0,112,0,0,96,14,1,37,48,0,3,112],[112,3,0,0,37,1,0,0,49,51,112,76,85,62,110,1],[51,109,0,0,8,62,0,0,13,91,33,31,70,29,69,80],[97,60,111,94,56,87,19,12,105,57,32,78,91,74,94,10] >;

C42.3Dic7 in GAP, Magma, Sage, TeX

C_4^2._3{\rm Dic}_7
% in TeX

G:=Group("C4^2.3Dic7");
// GroupNames label

G:=SmallGroup(448,105);
// by ID

G=gap.SmallGroup(448,105);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,141,232,219,184,1571,570,297,136,1684,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^14=b^2,d^2=b^2*c^7,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^13>;
// generators/relations

׿
×
𝔽